Die Kristallstruktur von Rb₆Si₁₀O₂₃

Von

H. Schichl, H. Völlenkle und A. Wittmann

Aus dem Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Hochschule Wien, Österreich

Mit 3 Abbildungen

(Eingegangen am 27. Dezember 1972)

The Crystal Structure of Rb₆Si₁₀O₂₃

The crystal structure of the compound $\text{Rb}_6\text{Si}_{10}\text{O}_{23}$ (identical with "Rb₂Si₄O₉") has been determined by means of threedimensional X-ray data resulting an *R*-value of 0.078. The lattice parameters of the orthorhombic unit cell (C2mm- C_{2v}^{14}) are: a = 9.348, b = 16.290 and c = 8.055 Å. The structure consists of a three-dimensional framework built up by [SiO₄] tetrahedra sharing 4 as well as 3 corners. The arrangement of tetrahedra can be derived from tridymite structure and exhibits pseudo-hexagonal symmetry. The compound transforms to a high-temperature modification with hexagonal symmetry at 500 °C (a = 9.48 and c = 8.16 Å).

Die Kristallstruktur der Verbindung $\text{Rb}_6\text{Si}_{10}\text{O}_{23}$ (bisher als $\text{Rb}_2\text{Si}_4\text{O}_9$ beschrieben) wurde mit Hilfe dreidimensionaler Röntgendaten bestimmt und bis zu einem *R*-Wert von 0,078 verfeinert. Die Gitterparameter der rhombischen Elementarzelle (C2mm—C_{2v}^{14}) betragen: a = 9,348, b = 16,290 und c = 8,055 Å. Die Struktur besitzt ein dreidimensionales Gerüst aus [SiO₄]-Tetraedern, die sowohl über 4 als auch über 3 Ecken vernetzt vorliegen. Die Anordnung der Tetraeder kann aus der Tridymitstruktur abgeleitet werden und zeigt noch deutlich pseudohexagonale Symmetrie. Bei 500 °C geht die Verbindung in eine Hochtemperaturform mit hexagonaler Symmetrie über (a = 9,48 und c = 8,16 Å bei 500 °C).

Einleitung

Die bekannten Kristallstrukturen von Silicaten mit Tetraeder-Einfachschichten weisen für die tetraedrisch koordinierten Atome T = Si, Al usw. ein O: T-Verhältnis von 2,5 auf. Bei diesem stöchiometrischen Verhältnis sind alle tetraedrischen Baugruppen über jeweils 3 Ecken an benachbarte Tetraeder gebunden. Liegen alle Tetraeder über 4 Ecken gebunden vor, so erhält man ein O: T-Verhältnis von 2,0, wobei in der Regel dreidimensionale Tetraedergerüste vorliegen. Im Gegensatz zu den zahlreichen Vertretern dieser beiden Gruppen, ist über Verbindungen, die sowohl dreifach als auch vierfach vernetzte Tetraeder enthalten, nur relativ wenig bekannt. Derartige Verbindungen sind bei einem O: T-Verhältnis zwischen 2,5 und 2,0 zu erwarten.

In den Systemen Bb_2O — $SiO_2^{1,2}$ und Cs_2O — SiO_2^3 werden zwei — wahrscheinlich isotype — Verbindungen der Formel $Bb_2Si_4O_9$ bzw. $Cs_2Si_4O_9$ beschrieben, die hinsichtlich der Zusammensetzung die Bedingung für ein gemeinsames Vorliegen von drei- und vierfach vernetzten [SiO₄]-Tetraedern erfüllen und daher für die vorliegende Untersuchung ausgewählt wurden.

Experimenteller Teil

Als Ausgangsprodukte wurden $\operatorname{Rb}_2\operatorname{CO}_3$ und $\operatorname{Cs}_2\operatorname{CO}_3$ (Fluka) sowie SiO_2 (Aerosil, Degussa, vorgesintert bei 1200 °C) eingesetzt. Gut homogenisierte Pulvermischungen von $\operatorname{Rb}_2\operatorname{CO}_3$ und SiO_2 im Verhältnis 1:4 wurden innerhalb von 6 Stdn. von 650 auf 850 °C erhitzt und 24 Stdn. bei dieser Temperatur gehalten. Pulverdiagramme dieser Proben zeigen das für $\operatorname{Rb}_2\operatorname{Si}_4\operatorname{O}_9$ beschriebene Linienmuster^{1, 2}.

Einkristalle bis zu 0,1 mm Durchmesser wurden durch Tempern grob gepulverter Proben von Rubidiumsilicat-Glas mit Impfkristallen erhalten. Die Temperatur wurde ebenfalls langsam von 650 auf 850 °C gesteigert und 14 Tage auf dem Höchstwert konstant gehalten. Das bei den Temperversuchen eingesetzte Rubidiumsilicat-Glas kann leicht durch rasches Abkühlen einer Schmelze von 950 °C hergestellt werden. Die Cäsiumverbindung ließ sich durch Tempern von Cäsiumsilicat-Glas mit Impfkristallen der Rubidiumverbindung bei 600—620 °C darstellen.

Zur Strukturbestimmung des Rubidiumsilicats wurde ein Einkristall mit etwa 0,05 mm Durchmesser ausgewählt. *Weissenberg*-Aufnahmen um [001] und Präzessions-Aufnahmen um [100] und [010] führten auf eine orthorhombische Elementarzelle mit den Abmessungen:

> $a = 9,348 \pm 0,006$ $b = 16,290 \pm 0,007$ und $c = 8,055 \pm 0,005$ Å.

Die Aufnahmen lassen eine ausgeprägte pseudohexagonale Unterzelle mit $a \approx 9,38$ und c = 8,055 Å erkennen. Mit der pyknometrisch bestimmten Dichte von 3,14 g cm⁻³ berechnet sich die Zahl der Formeleinheiten in der Elementarzelle für Rb₂Si₄O₉ zu 5,4, für die modifizierte Zusammensetzung Rb₆Si₁₀O₂₃ jedoch zu 2,0, d. h. in vorzüglicher Übereinstimmung mit der exper. Dichte. Als Auslöschungsbedingung wurde beobachtet, daß nur Reflexe mit h + k = 2n vorhanden sind, was auf die möglichen Raumgruppen C222, Cmm2, C2mm, Cm2m und Cmmm führt.

Die Intensitäten wurden aus integrierten und nichtintegrierten Weissenberg-Aufnahmen (Cu-K α -Strahlung) der reziproken Ebenen (hk0) bis (hk8) bestimmt. Von den insgesamt 597 in der Verfeinerung benützten Reflexen wurden 202 photometrisch gemessen, 263 visuell ermittelt und 132 nicht beobachtete Reflexe mit einem Drittel der Intensität des schwächsten beobachtbaren Reflexes eingesetzt. Nicht beobachtete Reflexe wurden auf den schwachen Zwischenschichtlinien mit l = 2n + 1 nur in jenen θ -Bereichen berücksichtigt, in denen mindestens 50% der möglichen Reflexe beobachtet werden konnten. Die Intensitäten wurden mit Lorentz-, Polarisations- sowie Absorptionsfaktoren für kugelförmige Kristalle ($\mu R = 0.6$) auf Strukturamplituden umgerechnet.

Tabelle 1. Atomparameter und Temperaturkoeffizienten für Rb₆Si₁₀O₂₃; Werte in Klammern geben die Standardabweichung

Atom	x	y	z	$B [{ m \AA}^2]$
Rb (1)	0,2448 (10)	0	0	1,9 (1)
Rb (2)	0,2520 (9)	0	1/2	1,9 (1)
Rb(3)	0,3800 —	0,3784(3)	0	2,0(1)
Rb (4)	0,3902 (8)	0,3806 (3)	1/2	1,8 (1)
Si(1)	0,6004 (13)	0	0,1966 (14)	0,9(2)
Si(2)	0,2130(10)	0,1965 (5)	0,1919(11)	1,1(1)
Si (3)	0,5176(10)	0,1721 (4)	0,3108(10)	0,8(1)
O (1)	0,5772 (67)	0	0	2,9 (9)
O (2)	0,2818 (38)	0,1838 (21)	0	2,0(6)
O (3)	0,5664(31)	0,1792 (17)	$\frac{1}{2}$	1,2(5)
O (4)	0,7624 (32)	0	0,2473 (39)	1,2(4)
O (5)	0,5066(30)	0,0772 (13)	0,2698 (27)	1,9 (4)
O (6)	0,1220 (25)	0,1221 (12)	0,2527 (28)	1,6 (3)
O (7)	0,3622 (21)	0,2155(11)	0,2975 (23)	0,9 (3)
O (8)	0,1317 (24)	0,2877 (12)	0,1992 (27)	1,3 (3)

der letzten Stellen an (Raumgruppe $C2mm-C_{2v}^{14}$)

Bestimmung der Kristallstruktur

Die Lagen der 12 Rb-Atome in der pseudohexagonalen Zelle konnten aus einer dreidimensionalen Patterson-Synthese abgeleitet werden. Eine folgende Fourier-Synthese mit den Phasen dieser Atome ließ die Lagen von 20 Si-Atomen erkennen, was die Zusammensetzung Rb₆Si₁₀O₂₃ bestätigt. Die Strukturfaktorrechnung mit den gefundenen Rb- und Si-Atomen, deren Anordnung noch immer mit der pseudohexagonalen Zelle beschrieben werden kann, ergibt einen R-Wert von 0,22. Eine weitere Fourier-Synthese lieferte alle Sauerstofflagen, die den R-Wert auf 0,177 verbesserten. Die Anordnung der Sauerstoffatome erfordert den Übergang zur orthorhombischen Raumgruppe C2mm-C¹⁴_{or}.

Die Lageparameter und isotropen Temperaturfaktoren für sämtliche Atome wurden mit Hilfe der Ausgleichsrechnung unter folgenden Bedingungen weiter verfeinert: Atomformamplituden für Rb, Si⁴⁺⁴ und O²⁻⁵, Gewichtsschema nach Hughes⁶ für die beobachteten Reflexe und

856

Tabelle 2. Beobachtete und berechnete Strukturamplituden für $\rm Rb_6Si_{10}O_{23}$

H 70246013570246135024681350124174030916898909792683579635232	H 24683512461359024680135702461357102468013590261324139235063
K 3444445555566667778888889999012233467011223456799000111111233456	K 000011112223333444444555566667777788888899999000011122333455667
ل محمد و و و و و و و و و و و و و و و و و و و	1 0000000000000000000000000000000000000
F0 104 82 183 197 197 198 199 199 199 199 199 199 199 199 199	F0 89 2233 352 2449 1145 1452 1455 1455 1454 1457 1255 1255 1608 1255 1608 1255 1608 1255 1608 1255 1608 1255 1608 1255 1608 1255 1608
FC 978 8312239 97511200 11232 975120 1200 1200 1200 1200 1200 1200 1200	FC 1000 75 5227 44 50 50 50 50 50 50 50 50 50 50 50 50 50
H &15024684574175902013570246818792468159021850461702808080868	H 50207979974857965706812325241502132124132102468013591024615
K 67780000112233344455556666777788888999001111212111111111111111110000	K 17800113579001111233344456901223344556788990100000011111122233
. *************************************	L 0000000000000000000001111111111111111
$\begin{array}{c} r_0 \\ 556 \\ 455 \\ 1368 \\ 932 \\ 916 \\ 1111 \\ 1029 \\ 779 \\ 555 \\ 498 \\ 525 \\ 549 \\ 526 \\ 549 \\ 526 \\ 549 \\ 520 \\ 784 \\ 3177 \\ 437 \\ 782 \\ 554 \\ 497 \\ 487 \\ 487 \\ 788 \\ 571 \\ 332 \\ 90 \\ 152 \\ 89 \\ 152$	$\begin{array}{c} 916\\ 916\\ 954548\\ 8575458\\ 8575458\\ 8368973824975453\\ 83689738249754533086555621949180\\ 83754548655915368973824975416393086555621949180292683312192311993395544180189339255421921752542192175254219933925542192175254219933925542192175254219217525421921752542192175254219217525421921752542192192292683312192292263331292292231231993392643331292292231231993392643331292292232922200000000000000000000000$
FC 712 562 2711 5763 591 04 990 94 97565 5730 591 04 990 94 97565 5730 591 04 990 94 97565 5730 58 990 46 45 9333 338 3974 66 26 95 5533 564 07 399 90 46 45 555 5533 564 07 399 91 46 17774 46 42 555 5533 564 07 399 91 46 17774 46 17774 46 1777 565 5533 564 07 399 91 46 177774 46 177774 46 177774 46 177774 46 177774 46 177774 46 177774 46 177774 46 1777774777774 46 17777747777777777	FC 9066131786699314457771837729276147719397205692356655623146578427717837729276147719377292356655623146665666666666666666666666666666666666
H 352185792441570485024681850617724125041960859287284851224488	H 70246013792135024681352137241574502835780046099468906837102
K 1123333334445555667788888899901011124834560111244555669011213354600001	K 34444455556777888888999011111223334566677122266667900001222255788
L 6646666666666666666666666666666666666	L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FQ 174 4 195 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F0 224 240 240 240 240 240 240 240 240 24
FC 189 9 10 19 19 19 19 19 19 19 19 19 19 19 19 19	$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$
H 2415028521304246135702461357024613702613502481352413021	H 41246813572481359102435712468352481302504147402468135024135
K 2233445589902000111122222333344445555666777888889991001112223	K 890000111112223333344455556666778889900122345800000111222333
1 77777777777778882888888888888888888888	L 2233333333333333333333333333333333333
F0 533046543558879368667754358881466459785012412416935318100018201466602273682801	$\begin{array}{c} 305 \\ 1394 \\ 1174 \\ 0596 \\ 0433 \\ 1284 \\ 0593 \\ 1154 \\ 0593 \\ 1154 \\ 0593 \\ 1154 \\ 0593 \\ 1154 \\ 0597 \\ 1048 \\ 0597 \\ 1048 \\ 0597 \\ 1059 \\ 1059 \\ 1154 \\ 1059 \\ 1155 \\ 1154 \\ 1155 \\ 115$
FC 325 322 92711 322 22747 341 1256 228 880 228 880 228 329 311 1256 228 880 228 329 311 1256 228 880 228 329 329 314 1256 228 329 329 329 329 329 329 329 329 329 329	FC 656299981627485299875116029427334744667729974762984774651794422415547711538707112107318511101110731851110731851107318511007318511007318511007318511007318510073185100000000000000000000000000000000000

ein konstanter Gewichtsfaktor für die nicht beobachteten Reflexe, der nach jedem Cyclus aus der Verteilung der Fehlerquadrate berechnet wurde. Im letzten Cyclus wurde ein R-Wert von 0,078 für die beobachteten Reflexe allein und von 0,095 für alle eingesetzten Reflexe erreicht. Das Ergebnis der Verfeinerung ist in Tab. 1 (Atomparameter), Tab. 2 (Strukturamplituden) und Abb. 1 (*Fourier*-Synthese) wiedergegeben.

Abb. 1. Dreidimensionale Fourier-Synthese für $Rb_6Si_{10}O_{23}$; Lage der Maxima wiedergegeben durch entsprechende Schnitte parallel xy. Die Linien der Elektronendichte sind für die Si- und O-Atome in Intervallen von $5e/Å^3$, für die Rb-Atome von $10e/Å^3$ gezeichnet

Diskussion der Kristallstruktur von Rb₆Si₁₀O₂₃

Die Struktur stellt einen dreidimensional vernetzten Verband von [SiO₄]-Tetraedern mit eingelagerten Rb-Atomen dar. Das Silicatgerüst kann als Abkömmling der Tridymitstruktur aufgefaßt werden: Entfernt man in dem in Abb. 2 (a) dargestellten Ausschnitt der Hochtemperaturmodifikation des Tridymits⁷ die strichliert gezeichneten Doppeltetraeder, so erhält man eine idealisierte Form des Tetraedergerüstes von Rb₆Si₁₀O₂₃ mit hexagonaler Symmetrie (P62m). Der Übergang in die beobachtete rhombische Symmetrie wird durch die Winkelung der Si—O—Si-Brükken herbeigeführt [Abb. 2 (b)]. Das Gerüst enthält in den Ebenen parallel zur c-Achse sechsgliedrige Tetraederringe, in den Ebenen normal zur c-Achse zwölfgliedrige Ringe (Abb. 2 a, b).

Abb. 2. a) Projektion der Struktur von β -Tridymit mit eingezeichneter hexagonaler und orthorhombischer Elementarzelle für $\mathrm{Rb}_6\mathrm{Si}_{10}\mathrm{O}_{23}$. b) Projektion der Struktur von $\mathrm{Rb}_6\mathrm{Si}_{10}\mathrm{O}_{23}$ parallel [001], wiedergegeben in Form von [SiO₄]-Tetraedern und den Lagen der Rb-Atome

Verbindung	Verhältnis 3fach:4fach vernetzte Tetraeder	0: <i>T</i>	Vernetzungs- zahl (sharing coefficient) nach Zoltai ⁸	Lit.
Macdonaldit				
$BaCa_4H_2[Si_{16}O_{38}] \cdot 10.4 H_2O_{10}$	3:1	2,375	1,812	9
Natriumtrisilicat		-	· .	
$Na_2[Si_3O_7]$	2:1	2,333	1,833	10
Zussmanit				
$KFe_{13}[Si_{17}AlO_{42}](OH)_{14}$	2:1	2,333	1,833	11
Hexarubidiumdekasilicat				
$Rb_{6}[Si_{10}O_{23}]$	3:2	2,300	1,850	diese Arbeit
Kaliumtetrasilicat				
$K_2[Si_4O_9]$	1:1	2,250	1,875	12

Tabelle 3. Silicatstrukturen mit einem O:T-Verhältnis zwischen 2,5 und 2,0

Tabelle 4. Interatomare Abstände und Winkel (in Å bzw. Grad) für Rb₆Si₁₀O₂₃; Standardabweichung der letzten Stellen in Klammern

						_
Rb (1)—O (1)	3,12 (6)	$1 \times$	Rb (2)—O (5)	3,28	3 (3).	4 imes
0 (2)	3,02~(4)	2 imes	O (6)	3,01	7(2)	$4 \times$
—O (6)	3,07(2)	$4 \times$				
Rb (3)O (2)	3,30(4)	$1 \times$	Rb (4)—O (3)	3,19	9 (3)	$1 \times$
O (4)	3,02(3)	2 imes	—O (4)	3,06	3 (3)	2 imes
O (6)	3,05(2)	2 imes	—-O (6)	2,95	5(2)	2 imes
—O (8)	3,19(2)	2 imes	O (7)	3,16	3(2)	2 imes
Si (1)O (1)	1,60(6)	$1 \times$	O (1)—Si (1)—O (4)	112,8	(2,6)	$1 \times$
O (4)	1,57(3)	$1 \times$	——O (5)	106, 5	(2,5)	2 imes
O (5)	1,65 (3)	2 imes	O (4)-Si (1)-O (5)	115,0	(1,5)	2 imes
			O (5)—Si (1)—O (5)	99,9	(1,8)	$1 \times$
Si (2)O (2)	1,69(4)	$1 \times$	O (2)—Si (2)—O (6)	113,6	(1,5)	$1 \times$
O (6)	1,56(2)	$1 \times$	—O (7)	99,9	(1,5)	$1 \times$
-0(7)	1,67(2)	$1 \times$	-0 (8)	108.4	(1.5)	$1 \times$
O (8)	1.67(2)	$1 \times$	O (6)—Si (2)—O (7)	116.3	(1.1)	$1 \times$
· · ·	,		O (8)	115.5	(1.2)	1 ×
			O (7)—Si (2)—O (8)	101,4	(1,1)	$1 \times$
Si (3) O (3)	1,60 (3)	$1 \times$	O (3)—Si (3)—O (5)	106,7	(1,4)	$1 \times$
—O (5)	1,59 (3)	$1 \times$	$-\mathbf{O}(7)$	106.8	(1,3)	$1 \times$
-0(7)	1,62(2)	$1 \times$	$-\mathbf{O}(8)$	109.2	(1,3)	$1 \times$
O (8)	1.54(2)	$1 \times$	O(5)—Si(3)—O(7)	110.7	(1.2)	$1 \times$
(/			Q (8)	109.7	(1.2)	1 ×
			O (7)—Si (3)—O (8)	113,4	(1,1)	$1 \times$
Si (1)O (1)	Si (1) 16	4,5 (4,5)	Si (2)O (2)-	–Si (2)	132,8	(2,4)
Si (3)—O (3)—	Si (3) 14	5,7(2,0)	Si (1)O (5)-	-Si (3)	141,9	(1,7)
Si (2)-O (7)-	Si (3) 13	4,9 (1,3)	Si (2)	-Si (3)	135,5	(1,5)
Si (3) O (3) O (5) O (7) O (8) Si (1)O (1) Si (3)O (3) Si (2)O (7)	1,60 (3) 1,59 (3) 1,62 (2) 1,54 (2) Si (1) 16 Si (3) 14 Si (3) 13	$1 \times 1 \times$	$\begin{array}{c} O (7) - Si (2) - O (8) \\ O (3) - Si (3) - O (5) \\ - O (7) \\ - O (8) \\ O (5) - Si (3) - O (7) \\ - O (8) \\ O (7) - Si (3) - O (8) \\ Si (2) - O (2) - \\ Si (1) - O (5) - \\ Si (2) - O (8) - \\ \end{array}$	101,4 106,7 106,8 109,2 110,7 109,7 113,4 Si (2) Si (3) Si (3)	(1,1) (1,4) (1,3) (1,2) (1,2) (1,2) (1,1) 132,8 141,9 135,5	$1 \times 1 \times$

860

Betrachtet man die Struktur hinsichtlich der Vernetzung der einzelnen [SiO₄]-Tetraeder, so sind pro Elementarzelle 12 Tetraeder über alle Ecken und 8 Tetraeder nur über drei Ecken mit benachbarten verknüpft. Tab. 3 bringt eine Gegenüberstellung von Silicatstrukturen mit drei- und vierfach vernetzten Tetraedern. Hervorzuheben wäre, daß mit dem Hexarubidiumdekasilicat, $Rb_6Si_{10}O_{23}$, das erste Gerüstsilicat dieser Gruppe aufgefunden wurde; die übrigen Verbindungen in der Tabelle stellen Schichtsilicate dar.

Die interatomaren Abstände und Winkel sind in Tab. 4 zusammengestellt. Bei den Si—O-Abständen treten zwei Arten der Bindung etwas stärker hervor: Bindungen zu terminalen Sauerstoffatomen mit einer mittleren elektrostatischen Bindungsstärke von 1,57 und einem mittleren Abstand von 1,57 Å und Bindungen zu Brückensauerstoffatomen mit einer mittleren Bindungsstärke von 2,14 und einem mittleren Abstand von 1,63 Å. Die von $Baur^{13}$ aufgestellte lineare Beziehung zwischen Abstandsdifferenz und elektrostatischer Bindungsstärke gibt die oben gefundene Differenz von 0,06 Å mit einer aus der Bindungsstärkendifferenz berechneten von 0,052 Å gut wieder.

Fünf von sechs unabhängigen Si—O—Si-Bindungswinkeln liegen im Bereich von 133—146°, nur der sechste übertrifft mit 164° den allgemeinen Durchschnitt deutlich, zeigt jedoch auch den größten Temperaturkoeffizienten von 2,9 Å².

Der mittlere Rb—O-Abstand von 3,09 Å für die Koordinationszahl [7] erscheint gegenüber einem Rb—O-Abstand von 2,92 Å [8] in Rb₂Ti₆O₁₃¹⁴ oder den aus den Ionenradien nach Shannon und Prewitt¹⁵ berechneten von 2,97 Å [8] und 3,10 Å [12] etwas vergrößert. Dies deutet darauf hin, daß die Rubidiumionen die im Silicatgerüst zur Verfügung stehenden Hohlräume nicht optimal ausfüllen.

Über eine Hochtemperatur-Modifikation von Rb₆Si₁₀O₂₃ und die Struktur von Cs₆Si₁₀O₂₃

Hochtemperaturaufnahmen von $\text{Rb}_6\text{Si}_{10}\text{O}_{23}$ bis 800 °C in einer Guinier—Lenné-Kamera lassen die Umwandlung in eine neue Modifikation mit sehr ähnlichem Linienmuster erkennen. Indiziert man die Hochtemperaturform analog der Raumtemperaturform mit einer rhombischen Zelle, so tritt die Umwandlung bei 500 °C durch einen Knickpunkt im Verlauf der drei Gitterparameter deutlich in Erscheinung (Abb. 3). Das b/a-Verhältnis der Raumtemperaturform nimmt zwischen 10 und 500 °C von 1,743 auf 1,732 ab, im Gegensatz zur Hochtemperaturform, die ein konstantes Verhältnis b/a = 1/3 zeigt. Dieses spezielle Verhältnis gestattet es, die Hochtemperaturform auch hexagonal zu indizieren (a = 9,48 und c = 8,16 Å bei 500 °C). Diese hexagonale

H. Schichl u. a.:

Elementarzelle resultiert auch unmittelbar aus der Struktur von $Rb_6Si_{10}O_{23}$ bei einer linearen Anordnung der Si—O—Si-Brücken in der z-Richtung. Analoge Umwandlungen werden bei Silicium—Sauerstoff-Verbindungen häufig beobachtet, wie z. B. beim Tridymit ^{7,16}.

Abb. 3. Gitterparameter a, b und c der rhombischen Zelle von Rb₆Si₁₀O₂₃ als Funktion der Temperatur; die angegebenen linearen Ausdehnungskoeffizienten α beziehen sich jeweils auf die Temperaturbereiche 0—400 °C und 500—800 °C

Aus Pulveraufnahmen der Cs-Verbindung erhält man in Analogie zu Rb₆Si₁₀O₂₃ folgende rhombische Elementarzelle: $a = 9,56 \pm 0,01$, $b = 16,56 \pm 0,01$ und $c = 8,28 \pm 0,01$ Å. Interessant ist, daß innerhalb der Meßgenauigkeit die Beziehung a/3 = b = 2c gilt, die sowohl eine hexagonale als auch eine kubische Indizierung zuläßt: a = 9,56 und c = 8,28 Å bzw. a = 11,71 Å. Die Intensitätsrechnung für die Zusammensetzung Cs₆Si₁₀O₂₃ zeigt bereits mit den Atomparametern von Rb₆Si₁₀O₂₃ gute Übereinstimmung mit dem beobachteten Pulver-

diagramm, was die Isotypie der beiden Verbindungen sehr nahelegt. Eine kubische Raumgruppe scheidet bei dieser Anordnung aus, was sich auch aus der beobachteten optischen Anisotropie ergibt. Der Unterschied zwischen der orthorhombischen und hexagonalen Symmetrie beschränkt sich wieder auf die Winkelung der Si—O—Si-Brücken und beeinflußt die grundsätzliche Anordnung nicht.

Die Rechenarbeiten konnten mit der Rechenanlage IBM 7040 des Instituts für numerische Mathematik der Technischen Hochschule Wien durchgeführt werden, wofür wir dem Vorstand, Herrn Prof. Dr. H. Stetter, bestens danken. Der Oesterreichischen Nationalbank sind wir für die finanzielle Unterstützung bei der Anschaffung wissenschaftlicher Geräte sehr zu Dank verpflichtet. Der Stadt Wien gilt unser Dank für die Bereitstellung von Förderungsmitteln aus der Hochschuljubiläumsstiftung, welche die Beschaffung eines Mikrodensitometers möglich machte.

Literatur

¹ Ss. D. Aleksejeva, J. neorg. Chim. [russ.] 8, 1426 (1963); J. Inorg. Chem. (Englisch) 742 (1963).

 2 K. W. Aljamovskaja und W. G. Tschuchlanzev, Neorg. Mater. 3, 1709 (1967).

³ Ss. D. Aleksejeva, J. neorg. Chim. **11** [russ.] 1171 (1966); J. Inorg. Chem. (Englisch) 627 (1966).

⁴ International tables for x-ray crystallography, Vol. 3. Birmingham: The Kynoch Press. 1962.

⁵ T. Suzuki, Acta Cryst. [Kopenhagen] 13, 279 (1960).

⁶ International tables for x-ray crystallography, Vol. 2. Birmingham: The Kynoch Press. 1959.

⁷ *R. E. Gibbs*, Proc. Roy. Soc. A 113, 351 (1927).

⁸ T. Zoltai, Amer. Mineral. 45, 960 (1960).

⁹ E. Cannillo, G. Rossi und L. Ungaretti, Rend. Accad. Naz. dei Lincei, Classe Sc. Mat. Fis. Nat. **45**, 399 (1968).

¹⁰ P. B. Jamieson, Nature 214, 794 (1967).

¹¹ A. Lopes-Vieira und J. Zussman, Mineralog. Mag. 37, 49 (1969).

¹² H. Schweinsberg und F. Liebau, Naturwissensch. 58, 267 (1971).

¹³ W. H. Baur, Amer. Mineral. 56, 1573 (1971).

¹⁴ S. Andersson und A. D. Wadsley, Acta Cryst. [Kopenhagen] 15, 194 (1962).

¹⁵ R. D. Shannon und C. T. Prewitt, Acta Cryst. [Kopenhagen] B 25, 925 (1969).

¹⁶ W. A. Dollase, Acta Cryst. [Kopenhagen] 23, 617 (1967).